optGpSampler: An Improved Tool for Uniformly Sampling the Solution-Space of Genome-Scale Metabolic Networks
نویسندگان
چکیده
UNLABELLED Constraint-based models of metabolic networks are typically underdetermined, because they contain more reactions than metabolites. Therefore the solutions to this system do not consist of unique flux rates for each reaction, but rather a space of possible flux rates. By uniformly sampling this space, an estimated probability distribution for each reaction's flux in the network can be obtained. However, sampling a high dimensional network is time-consuming. Furthermore, the constraints imposed on the network give rise to an irregularly shaped solution space. Therefore more tailored, efficient sampling methods are needed. We propose an efficient sampling algorithm (called optGpSampler), which implements the Artificial Centering Hit-and-Run algorithm in a different manner than the sampling algorithm implemented in the COBRA Toolbox for metabolic network analysis, here called gpSampler. Results of extensive experiments on different genome-scale metabolic networks show that optGpSampler is up to 40 times faster than gpSampler. Application of existing convergence diagnostics on small network reconstructions indicate that optGpSampler converges roughly ten times faster than gpSampler towards similar sampling distributions. For networks of higher dimension (i.e. containing more than 500 reactions), we observed significantly better convergence of optGpSampler and a large deviation between the samples generated by the two algorithms. AVAILABILITY optGpSampler for Matlab and Python is available for non-commercial use at: http://cs.ru.nl/~wmegchel/optGpSampler/.
منابع مشابه
Uniform Sampling of Steady States in Metabolic Networks: Heterogeneous Scales and Rounding
The uniform sampling of convex polytopes is an interesting computational problem with many applications in inference from linear constraints, but the performances of sampling algorithms can be affected by ill-conditioning. This is the case of inferring the feasible steady states in models of metabolic networks, since they can show heterogeneous time scales. In this work we focus on rounding pro...
متن کاملPhysiologically Shrinking the Solution Space of a Saccharomyces cerevisiae Genome-Scale Model Suggests the Role of the Metabolic Network in Shaping Gene Expression Noise
Sampling the solution space of genome-scale models is generally conducted to determine the feasible region for metabolic flux distribution. Because the region for actual metabolic states resides only in a small fraction of the entire space, it is necessary to shrink the solution space to improve the predictive power of a model. A common strategy is to constrain models by integrating extra datas...
متن کاملGenome-Scale Metabolic Network Models of Bacillus Species Suggest that Model Improvement is Necessary for Biotechnological Applications
Background: A genome-scale metabolic network model (GEM) is a mathematical representation of an organism’s metabolism. Today, GEMs are popular tools for computationally simulating the biotechnological processes and for predicting biochemical properties of (engineered) strains.Objectives: In the present study, we have evaluated the predictive power of two ...
متن کاملSampling the Solution Space in Genome-Scale Metabolic Networks Reveals Transcriptional Regulation in Key Enzymes
Genome-scale metabolic models are available for an increasing number of organisms and can be used to define the region of feasible metabolic flux distributions. In this work we use as constraints a small set of experimental metabolic fluxes, which reduces the region of feasible metabolic states. Once the region of feasible flux distributions has been defined, a set of possible flux distribution...
متن کاملEColiCore2: a reference network model of the central metabolism of Escherichia coli and relationships to its genome-scale parent model
Genome-scale metabolic modeling has become an invaluable tool to analyze properties and capabilities of metabolic networks and has been particularly successful for the model organism Escherichia coli. However, for several applications, smaller metabolic (core) models are needed. Using a recently introduced reduction algorithm and the latest E. coli genome-scale reconstruction iJO1366, we derive...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 9 شماره
صفحات -
تاریخ انتشار 2014